Acta Crystallographica Section E

Structure Reports
 Online

6,7,8,9-Tetrahydro-2H-1,2,4-triazolo[4,3-a]-azepin-3(5H)-one

Gui-Sheng Yu, Hai-Zhen Xu* and Xin Zhang

College of Chemistry and Life Science, Tianjin Normal University, Weijin Road No. 241,
Tianjin, People's Republic of China

Correspondence e-mail: tj_xhz@126.com

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.058$
$w R$ factor $=0.154$
Data-to-parameter ratio $=14.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]In the title compound, $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}$, the seven-membered hetero-ring adopts a chair conformation. The five-membered ring is essentially coplanar with the fused back of the chair. The compound is stabilized by a strong intermolecular N $\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, forming a chain.

Comment

Recently, bicyclic 1,2,4-triazol-3(2H)-ones have been designed and synthesized as potential 5-HT2 antagonists (Yoshifumi et al., 1992). It was noticed that many hetero-ring compounds possess high herbicidal activities; however, the use of their derivatives as herbicides has rarely been reported. This provides us with a chance to obtain the herbicidal lead compound with bicyclic 1,2,4-triazol-3(2 H)-ones. In this paper, we describe the crystal structure of the title compound, (I).

(I)

In (I), the seven-membered heterocyclic ring adopts a chair conformation. The five-membered ring is essentially coplanar with the fused back of the chair, viz. atoms $\mathrm{C} 1, \mathrm{~N} 1, \mathrm{C} 6$ and C 5 (Fig. 1). The dihedral angles formed by the plane $\mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 4 / \mathrm{C} 5$ with $\mathrm{C} 1 / \mathrm{C} 5 / \mathrm{C} 6 / \mathrm{C} 7 / \mathrm{N} 1 / \mathrm{N} 2 / \mathrm{N} 3$ and $\mathrm{C} 2 / \mathrm{C} 3 / \mathrm{C} 4$ are 51.9 (1) and $56.1(2)^{\circ}$, respectively. The packing form of the molecule is a sandwich, and the compound is stabilized by an intermolecular

Figure 1
View of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Received 11 January 2006
Accepted 18 January 2006

Figure 2
The packing of (I), viewed along the c axis. Dashed lines indicate hydrogen bonds.
$\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, forming a chain along the b axis (Fig. 2 and Table 2).

Experimental

The title compound, (I), was synthesized by the procedure of Petersen \& Tietze (1957). The product was recrystallized from ethanol, affording colorless crystals suitable for X-ray analysis.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{7} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O} \\
& M_{r}=153.19 \\
& \text { Monoclinic, } P 2_{1} / n \\
& a=9.069(9) \AA \\
& b=7.884(8) \AA \\
& c=10.780(11) \AA \\
& \beta=111.279(17)^{\circ} \\
& V=718.2(12) \AA^{3} \\
& Z=4
\end{aligned}
$$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.973, T_{\text {max }}=0.980$
3655 measured reflections

$$
D_{x}=1.417 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 1141 reflections
$\theta=3.3-25.3^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Prism, colorless
$0.28 \times 0.24 \times 0.20 \mathrm{~mm}$

1426 independent reflections
898 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.049$
$\theta_{\text {max }}=26.1^{\circ}$
$h=-11 \rightarrow 8$
$k=-9 \rightarrow 9$
$l=-13 \rightarrow 12$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$
$w R\left(F^{2}\right)=0.155$
$S=1.07$
1426 reflections
101 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.08 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.004$
$\Delta \rho_{\text {max }}=0.26 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.25 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.032 (8)

Table 1
Selected torsion angles $\left({ }^{\circ}\right)$.

$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$122.9(2)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-74.0(3)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$75.2(3)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 3$	$-122.6(3)$

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{i}}$	0.86	1.95	$2.776(3)$	160
Sym				

Symmetry code: (i) $-x-\frac{1}{2}, y+\frac{1}{2},-z+\frac{3}{2}$.
The H atom bonded to N 2 was located in a difference map but then placed in a calculated position. All other H atoms were positioned geometrically. The H atoms were refined using a riding model, with $\mathrm{N}-\mathrm{H}=0.86 \AA$ and $\mathrm{C}-\mathrm{H}=0.97 \AA$, and with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

References

Bruker (1999). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Petersen, S. \& Tietze, E. (1957). Chem. Ber. 90, 909-921.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Yoshifumi, W., Hiroyuki, U., Shozo, K., Hirotaka, Y., Toshiro, S., Tsuyoshi, T., Yoshiyuki, M., Megumi, Y. \& Munefumi, K. (1992). J. Med. Chem. 35, 189194.

[^0]: © 2006 International Union of Crystallography All rights reserved

